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1. Introduction

Euclidean wormholes [1 – 3] are extrema of the action in euclidean quantum gravity, con-

necting two different asymptotic regions, or arbitrarily separated points in the same ge-

ometry. These are clearly interesting objects. The former configurations might provide for

some imprint of other vacua in the landscape on physics in our vacuum. The latter con-

figurations induce in the effective action (on scales larger than the wormhole size) bilocal

operators of the form

SWH = −1

2

∑

IJ

∫

dDx dDyOI(x)CIJOJ (y) , (1.1)

where the OI(x) are local operators with the same quantum numbers as the mouth of the

wormhole at x. Naively these operators completely destroy macroscopic locality. However,

Coleman argued for a different interpretation [4, 5] noting that

e−SWH =

∫

dαI e−
1

2
αI(C−1)IJ αJ e−

R

dDx
P

I αIOI(x) . (1.2)

Thus, all correlation functions are those of a local theory with the addition of the operators

αIOI to the Lagrangian density, and with a Gaussian weighting for the αI . Note that the

αI are constant in space and time. Branches of the wavefunctions with different values of

the αI will decohere, and a given universe can be thought of as being in a superselection

sector labeled by a specific set of these parameters.

If wormholes exist in quantum gravity and are to be interpreted a la Coleman, then

they represent an intrinsic randomness of the observed constants of nature, even if the
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fundamental Lagrangian is completely fixed and we are in a specified vacuum.1 Thus it is

important to understand whether this effect is present. AdS/CFT duality should provide

a laboratory for addressing this question within string theory, as it represents a complete

description of quantum gravity within AdS boundary conditions. There have been some

studies of this question [7, 8] but as yet no sharp result, because the wormholes that have

been considered have fields that grow at long distance on at least one side. Thus they

cannot be inserted into AdS space without changing the boundary conditions, and their

effects cannot be represented locally on each end as in eq. (1.1).

It is clearly of interest to try and embed wormholes into string theory and in par-

ticular into AdS/CFT. The simplest controllable wormhole solutions, with parametrically

low curvature relative to the Planck scale, are the axionic wormholes of Giddings and Stro-

minger [1]. These have yet to be embedded in string theory, for the usual reason that axions

are always accompanied by dilatonic moduli which must be taken into account. The sim-

plest attempt at doing so leads to singular solutions [9]. Subsequent work by Tamvakis [10]

and much more recent work of Bergshoeff et. al [11] revealed wormholes solutions in string

compactifications down to D = 4 flat spacetime. These solutions can be embedded into

euclidean AdS2 × S2 by arranging for the wormhole size to be much less than the AdS

curvature. However, this does not yet allow us to pose a sharp paradox, because the CFT1

duals remain mysterious and so it is hard to draw conclusions. Another strategy would be

to use the recent compactifications of type IIA supergravity down to AdS4 with all moduli

except some axions stabilized [12]. However, we again do not understand the CFT duals

of these models; also, it is not clear whether the moduli are sufficiently massive.

The above results are consistent with the possibility that the moduli singularities of

string wormholes always conspire to prevent a sharp confrontation with AdS/CFT dual-

ity [7].2 However, we will find that this is not the case.

In section 2 we review and generalize the constructions of wormholes in flat spacetime

of refs. [1, 9 – 11]. For euclidean gravity coupled to scalar moduli with a general metric

on moduli space, we show that non-singular wormhole solutions exist when there are suffi-

ciently long timelike geodesics in moduli space, measured in Planck units. We then check

whether the simplest moduli spaces that arise from toroidal compacatification down to

D flat dimensions satisfy this constraint. For a simple class of geodesic trajectories, we

find that while there are no solutions for 6 < D ≤ 10, in D ≤ 6 non-singular wormhole

solutions exist. The D = 6 solutions can be embedded (again on scales smaller than the

AdS curvature) into AdS3 × S3 × T 4, where there is a well-defined CFT dual.

In section 3 we discuss some technical subtleties related to the matter path integral.

This is not central to our main point, but is necessary in particular to resolve a puzzle

regarding the single-valuedness of the fields. We also evaluate the wormhole action, taking

1Coleman later proposed an additional mechanism that would fix the constants [6], and which would in

particular set the cosmological constant to zero. This requires additional assumptions about the interpre-

tation of euclidean gravity, and has been criticized on various grounds.
2There is a fairly large literature on string wormhole solutions whose metric is nonsingular in some

frame, but where the dilaton diverges at one end so these cannot be glued into a single spacetime. Ref. [13]

discusses wormholes that are asymptotically nonsingular but have a singularity in the middle.
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account of surface terms that are ignored in the earlier discussion.

In section 4 we discuss the implications of our result. We draw a sharp paradox

between AdS/CFT duality and the fluctuation of the coupling constants, and so argue

that Coleman’s effect must not be present in string theory. We also discuss alternate

interpretations.

2. Wormhole solutions

2.1 Generalities

The simplest setting for string wormhole solutions [1, 9] is a euclidean theory in D dimen-

sions, with gravity, a scalar, and a (D − 1)-form field strength. The action is

SF =
1

2κ2

∫

dDx
√

g

(

−R +
1

2
∂µϕ∂µϕ +

1

2(D − 1)!
eβϕFµ···νF

µ···ν

)

, (2.1)

up to a surface term that we leave for the next section. The equations of motion for this

action are the same as for

SA =
1

2κ2

∫

dDx
√

g

(

−R +
1

2
∂µϕ∂µϕ − 1

2
e−βϕ∂µA∂µA

)

, (2.2)

with the form field replaced by an ‘axion’ via

Fµ···ν = ǫµ···νλe−βϕ∂λA . (2.3)

We will refer to eqs. (2.1), (2.2) as the flux form and the axion form respectively. Note

that the Lagrangian density is not invariant, and that for real Fµ···ν the A kinetic term is

negative. For now we use the scalar version simply as a means of encoding the equations of

motion. Subtleties such as the single-valuedness of A, and all surface terms in the action,

will be left for the next section.

We now generalize to an arbitrary euclidean theory of gravity coupled to massless

scalars φI in D dimensions. The two-derivative action is

SA =
1

2κ2

∫

dDx
√

g

(

−R +
1

2
GIJ(φ)∂µφI∂

µφJ

)

. (2.4)

As we see in the example above, for the euclidean Lagrangians coming from compactifica-

tions of string theory, the metric GIJ does not have a definite signature — in particular the

axionic scalars have the “wrong” sign kinetic terms. Indeed these wrong signs are crucial

for the wormhole solutions to exist.

We are interested in spherically symmetric solutions of the form

ds2 = N2(r)dr2 + a2(r)dΩ2
D−1 , φI = φI(r) . (2.5)

Plugging this Ansatz into the action we have

SA =
VD−1

2κ2

∫

dr NaD−1

[

(D − 1)(D − 2)

(

− a′2

N2a2
− 1

a2

)

+
1

2N2
GIJφI′φJ ′

]

, (2.6)
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where primes will always denote derivatives with respect to r. Here we have neglected

surface terms that don’t affect the equations of motion, we will take them into account in

evaluating the action in the next section.

Varying N , and then choosing the gauge N(r) = 1, gives the constraint

a′2

a2
− 1

a2
− GIJφI′φJ ′

2(D − 1)(D − 2)
= 0 . (2.7)

The equation of motion for the scalars is

(aD−1GIJφJ ′)′ − 1

2
aD−1GJK,Iφ

J ′φK′ = 0 . (2.8)

If we define dr/aD−1 = dτ , this becomes the geodesic equation in the metric GIJ ,

d2φI

dτ2
+ ΓI

JK
dφJ

dτ

dφK

dτ
= 0 . (2.9)

In particular these means that the invariant length GIJ(dφI/dτ)(dφJ/dτ) is a constant of

the motion, or equivalently that

GIJφI′φJ ′ =
C

a2D−2
. (2.10)

Inserting this into the equation for a′, we have

a′2 − 1 − C

2(D − 1)(D − 2)a2D−4
= 0 , (2.11)

which is the same as energy conservation for a newtonian particle with effective potential

Veff(a) = −1 − C

2(D − 1)(D − 2)a2D−4
. (2.12)

The nature of the solution then depends on whether the geodesic motion on moduli space

is spacelike (C > 0), null (C = 0) or timelike (C < 0). For C > 0, the potential goes

to −∞ as a → 0, so a′ must diverge and the solution is singular. For C = 0, we have

a(r) = r, so the metric is that of flat space and the scalar solution corresponds to an

extremal D-instanton. But clearly for

C ≡ −2(D − 1)(D − 2)a2D−4
0 < 0 , (2.13)

wormhole solutions are possible with a(r) → r2 as r → ±∞, and with minimum value

a(r = 0) = a0.

We see that the scalars are just travelling along a timelike geodesic in moduli space,

but there is a constraint in order to be able to find a solution. Denote the value of the

moduli at the spacetime boundaries as φ±∞ and the value at the neck by φ0. Now, the

timelike distance between φ−∞ and φ∞ along the geodesic is

d[φ−∞, φ∞] = 2d[φ−∞, φ0] = 2

∫ 0

−∞
dr

|C|1/2

a(r)D−1

= 2
√

2(D − 1)(D − 2)

∫ ∞

1

dâ

â
√

â2D−4 − 1

= π

√

2(D − 1)

D − 2
, (2.14)
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where we substituted dr → da/a′(r), used the equation of motion for a′, and introduced

the dimensionless variable â = a/a0. Thus, in order to be able to find a wormhole solution

with the moduli bounded, we must be able to find a compact timelike geodesic at least as

long as (2.14) in the scalar moduli space. In practice we will identify noncompact timelike

geodesics, whose length must be strictly greater than (2.14),

d2 > 2π2 D − 1

D − 2
, (2.15)

so that we can restrict to a compact piece satisfying (2.14). This is measured in Planck

units, 2κ2 = 1.

It is trivial to generalize this analysis to a case with negative cosmological constant, so

that the asymptotic spaces are AdS spaces with curvature scale L. This is just an aside; it

is not directly relevant to the case we will be interested in, instantons localized on AdS×S

spaces. The cosmological constant simply adds a piece −a2/L2 to the effective potential

V (a), and the solutions asymptote to a(r) → e|r|/L as r → ∞. Following the same steps

as before, the length of the geodesic is becomes

d[φ−∞, φ0] =
√

2(D − 1)(D − 2)

∫ ∞

1

dâ

â

√

â2D−4(â2 + L̂2)/(1 + L̂2) − 1
, (2.16)

where â = a/a0, L̂ = L/a0, and a0 is again the turning radius. This is strictly less than

the flat space integral, so the necessary geodesic is shorter (a weaker condition). Clearly

for small wormholes relative to the AdS scale a0/L ≪ 1, the bound on the length is the

same as before up to corrections of order O(a2
0/L

2).

The condition of having a long enough timelike geodesic in moduli space is trivially

satisfied for the axion-gravity system without a dilaton [1], where the moduli space is

one-dimensional and the metric ds2 = −dA2 is timelike thanks to the “wrong” sign of

the axion kinetic term. However the moduli spaces we get from simple compactifications

of string theory have both space-like and time-like directions, associated with axions and

dilatons. In particular, these Lorentzian moduli spaces have horizons that limit the length

of timelike geodesics. For instance, consider the axion-dilaton system in type IIB string

theory in D = 10. The moduli space metric (with the wrong sign for the axion) is

ds2 = dϕ2 − e2ϕdA2 , (2.17)

corresponding to β = −2 in the action (2.1), (2.2). This is just minus the metric of a causal

patch of (1 + 1)-dimensional de Sitter space with unit dS radius, so we are interested in

spatial geodesics in this patch. As is familiar, because of the presence of the dS horizon

there is a maximum separation between spacelike separated points beyond which no connect

can connect them, so there is a maximum length for spatial geodesics.

This can be found by an easy direct computation: there is a noncompact timelike

geodesic eϕ = cos τ , A = tan τ , whose length is π. We can also get the answer indirectly,

by remembering that the Wick rotation of a causal patch of dS is half of a ball S2, so the
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maximum separation angle, and the maximum length on the unit hemisphere, is π.3 There

is no D for which this exceeds π
√

D−1
D−2 (the case D = 1 is unphysical), so there are no

wormhole solutions.

For general β, the metric can be written

ds2 = dϕ2 − e−βϕdA2 ≡ 4

β2
(dϕ̃2 − e2ϕ̃dÃ2) . (2.18)

The longest geodesic is now 2π/|β|, and so the condition (2.15) for a wormhole solution

becomes [1, 9, 14]
1

β2
>

D − 1

2(D − 2)
. (2.19)

For reference we give the most general long geodesic for given β, whose four parameters

ϕ0, A0, τ0, q can be obtained by a general SL(2, R) transformation together with a rescaling

of the affine parameter, which corresponds to scaling the wormhole charge (a shift of the

affine parameter has the same effect as one of the SL(2, R) generators):

e−βϕ/2 = e−βϕ0/2 cos q(τ − τ0) , A = A0 −
2

β
eβϕ0/2 tan q(τ − τ0) , (2.20)

The length, for −π/2 < qτ < π/2, is always 2π/|β|.

2.2 Wormholes in D = 4, 6

For heterotic or type II superstring theory compactified to D = 4 on a Calabi-Yau manifold

or T 6, the effective action for the four-dimensional dilaton and axion (Φ4, Bµν) plus the

internal dilaton and axion (σ,A) is

S =
1

2κ2

∫

d4x
√

g

(

−R+ 2∂µΦ4∂
µΦ4 + 6∂µσ∂µσ +

1

12
e−4Φ4HµνρH

µνρ − 1

2
e−4σ∂µA∂µA

)

.

(2.21)

Upon rescaling the fields, this is two copies of the system (2.1), (2.2), the four-dimensional

one having β−2 = 1
4 and the internal one having β−2 = 3

4 [9]. The condition (2.19)

becomes β−2 > 3
4 so both of these wormholes are singular.4 However, a simple observa-

tion [10, 11] allows the construction of nonsingular wormholes in this theory. That is, if we

consider a solution with both axion charges, then the relevant moduli space is the product

of the two separate spaces, and the longest timelike geodesic would be the ‘diagonal’ in the

two spaces. The condition (2.19) now becomes

∑

i

1

β2
i

>
D − 1

2(D − 2)
, (2.22)

3There is a geodesic of length 2π running around the edge, but there is no slicing such that this continues

back to a Lorentzian geodesic.
4For the critical case β−2 = 3

4
, the fields blow up only at infinity, and it is possible that an extension

of the analysis (2.16) to AdS2 × S2 would give a nonsingular wormhole. However, to make the sharpest

paradox we would like to be able to take the wormholes small compared to the AdS radius, so we insist

that they be nonsingular even in flat space.
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which is comfortably satisfied in the theory (2.21). Thus euclidean wormhole solutions do

exist in string theory [10, 11].

Turning to the IIB theory on T 4, for which we have a good CFT dual, the most closely

analogous action would involve the four-dimensional and internal dilatons, as well as the

noncompact RR five-form field strength and internal axion. The reduced action is

S =
1

2κ2

∫

d6x
√

g

(

−R+∂µΦ6∂
µΦ6+4∂µσ∂µσ+

1

12
e−2Φ6+4σFµ···ρF

µ···ρ− 1

2
e−4σ∂µA∂µA

)

.

(2.23)

The internal dilaton-axion system has β−2 = 1
2 . Exciting the five-form sources the linear

combination Φ4 = −2σ, giving β−2 = 1
4 . Neither of these exceeds the necessary value 5

8 .

Also, in this case we cannot simply combine the two systems diagonally as in eq. (2.22)

because the moduli space is not a product: the dilatons mix, and so do the axions (through

Chern-Simons couplings); we do not know if there is a sufficiently long geodesic in this

space.

However, a simple trick allows us to find nonsingular wormholes in a different way.

Consider just the internal fields, and regard the T 4 as T 2 × T 2. We now have a product

space where each piece has β−2 = 1
4 , so that the diagonal geodesic has length-squared

1
4 + 1

4 , reproducing the result for the internal dilaton-axion of T 4. Now, it is familiar that

for compactification on T 2 we can identify two decoupled dilaton-axion systems, where the

first is from the dilaton-axion on the T 2 and second comes from the complex structure of

the T 2. A Z2 T -duality interchanges these so they must each have β−2 = 1
4 . Summing

over the four separate factors from the two T 2s, the left-hand-side of eq. (2.22) is 1 > 5
8 ,

and so there are nonsingular wormholes with six noncompact dimensions. Thus we will be

able to frame a sharp paradox with AdS/CFT.

The axions for the solution just described come from g67, B67, g89, and B89. We can

also construct this solution in various dual forms. For example, by taking the S-dual, and

then the T -dual on the 7- and 9-axes, we obtain instead the axions B67, C69, B89, and C78.

The reduced action is

S =
1

2κ2

∫

d6x
√

g

(

−R + ∂µΦ6∂
µΦ6 +

9
∑

m=6

∂µσm∂µσm

−1

2
e−2σ6−2σ7∂µB67∂

µB67 −
1

2
e−2σ8−2σ9∂µB89∂

µB89

−1

2
e2Φ6−σ6+σ7+σ8−σ9∂µC69∂

µC69 −
1

2
e2Φ6+σ6−σ7−σ8+σ9∂µC78∂

µC78

)

.(2.24)

Note that the axions couple to orthogonal combinations of moduli, and that the normal-

ization corresponds to β−2 = 1
4 for each. For concreteness, we will focus on this example

in the following discussion.

The D = 6 wormhole solution can also be understood in terms of the SO(5, 5)/SO(5)×
SO(5) geometry of the moduli space. For the numerator group we have SO(5, 5) ⊃
SO(4, 4) ⊃ SO(2, 2)2 = SO(2, 1)4; the last step is parallel to the familiar SO(4) = SO(3) ×
SO(3). The intersection of the denominator group with the SO(2, 1)4 is SO(2)4. Thus

we obtain four copies of the dilaton-axion system. The construction with axions g67, B67,
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g89, and B89 corresponds to SO(4, 4) and SO(2, 2)× SO(2, 2) being the real versions of the

T -duality groups of T 4 and T 2 × T 2 respectively. The axions B67, C69, B89, and C78 lie in

a U -dual SO(4, 4). In D = 7 the numerator group is SL(5, R) and only contains two copies

of SO(2, 1), which is not enough for our construction. It is possible that there are longer

geodesics not lying in a product of SO(2, 1)/SO(2) factors, but we have not been able to

find any.

3. Technicalities

3.1 Path integral subtleties

We begin with a discussion of the structure of the euclidean action, in particular the peculiar

“wrong” sign kinetic terms in the axion form of the action compared to the “normal” sign

kinetic term for the “flux” form. From a variety of perspectives, it is nice to understand

what is going on in axionic language; for instance because winding D and F strings have a

natural local coupling to axions. Much of the discussion below is a review of the arguments

of Coleman and Lee [15]. We then compute the action for the wormhole solutions found in

the previous section. Interestingly, we find that this action is always smaller than that of

a pair of D-instantons with the same charges at the two mouths of the wormhole.

The relevant issues all arise in a very simple and familiar toy setting: the quantum

mechanics of a non-relativistic particle moving on a circle of unit radius, with euclidean

action S =
∫

dt
(

1
2 θ̇2 + V (θ)

)

. Here θ is the analog of our axions. With vanishing potential,

there is shift symmetry on θ with associated charge Q — the particle momentum. We

include the possibility of a small V (θ) to model the tiny shift-symmetry violating effects

we also expect in our axion example. Now consider the euclidean transition amplitude

Gθf ,θi
(T ) = 〈θf |e−HT |θi〉 (3.1)

Let us start with V = 0. In this trivial case we know the spectrum exactly and

Gθf ,θi
(T ) =

∑

Q

e−Q2T/2eiQ(θf−θi) (3.2)

Clearly, for large T , this expression has the form of a semiclassical expansion, with in-

creasingly exponentially suppressed contributions from larger charge sectors; indeed this

sum is the direct analog of the “flux” presentation of the action. On the other hand, a

straightforward evaluation of the path integral representation of Gθf ,θi
(T ) does not yield

this semiclassical expansion. Indeed, the saddle points of the euclidean path integral with

paths starting at θi and ending at θf in euclidean time T are ones that wind around the

circle m times, so θ(τ) = θi+(θf−θi+2πm)τ/T , with euclidean action (θf −θi+2πm)2/2T .

Thus

Gθf ,θi
(T ) =

∑

m

e−(θf−θi+2πm)2/2T (3.3)

Of course this expression for G is the same as the earlier one by Poisson resummation

(modulo a prefactor form the determinant, which we have omitted), but for large T the

– 8 –
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direct evaluation of the euclidean path integral gives a very bad expansion. It would be

nice to extract the good semiclassical expansion directly from a θ path integral. To wit,

let us look at the euclidean transition amplitude, not between eigenstates of θ but between

momentum eigenstates:

GQ′,Q(T ) = 〈Q′|e−HT |Q〉 , Gθf ,θi
(T ) =

∑

Q′,Q

ei(Q′θf−Qθi)GQ′,Q(T ) (3.4)

Clearly for V (θ) = 0, charge is conserved and GQ′,Q is diagonal, while for small V (θ) there

will be small off-diagonal pieces. Now, since |Q〉 =
∫

dθ eiQθ|θ〉, there is a simple path

integral representation for GQ′,Q(T ):

GQ′,Q(T ) =

∫

free
Dθ e−S̃(θ) , S̃(θ) = S(θ) − i[Qθ(0) − Q′θ(T )] , (3.5)

where the first term is the usual euclidean action S(θ) =
∫ T
0

(

1
2 θ̇2 + V (θ)

)

and the second

term is a boundary action. Note that the boundary values of θ are not fixed but free

(integrated over) in this path integral. To belabor the obvious — if we are interested in

Gθf ,θi
, the boundary values θf , θi enter only in the fourier transform from GQ′,Q to Gθf ,θi

,

and have nothing to do with the (unfixed!) boundary values in the θ path integral.

Now, the saddle points contributing to the θ path integral are easily determined. The

equation of motion for θ is the usual euclidean one θ̈ − V ′(θ) = 0, but there is also a

boundary variation which leads to

θ̇(T ) = −iQ′, θ̇(0) = −iQ . (3.6)

Clearly in general these equations have complex solutions. For the special case V (θ) = 0, as

expected there is only a solution for Q = Q′ which is θ̇ = iQ. Alternately, we could define

θ = −iA; then A would have the “wrong” sign kinetic term but a real solution. Either

way, on the solution, the action is S̃ = +Q2T/2, and reproduces the nice semiclassical

expansion for large T .

We can consider a more interesting example, a particle moving in a central potential

in two dimensions with euclidean action S =
∫

dt
(

1
2 ṙ2 + 1

2r2θ̇2 + V (r)
)

. There is still a

charge associated with the shift symmetry on θ, the angular momentum, and we can still

find a semiclassical expansion along the lines above. Clearly while θ in this case will be

imaginary, r will not be; equivalently, we flip the kinetic term for θ and not r in evaluating

the saddle point action with fixed angular momentum. In both cases, the kinetic term of

the variable conjugate to the conserved charge is flipped; note that the action is positive,

however, and can be obtained by inserting the solution of the equations of motion with

the wrong sign kinetic term back into the original euclidean action with usual sign kinetic

terms.

This story generalizes trivially to our wormhole example. In all the cases of inter-

est in string theory, there is a set of co-ordinates on moduli space where the moduli

naturally group themselves into dilatons ϕa and axions Ai, with metric GIJdφIdφJ =

Gab(ϕ)dϕadϕb +
∑

i Fi(ϕ)dA2
i . There are charges Qi associated with the shift symmetries
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on the Ai. The wormhole solutions correspond to euclidean transition amplitudes with fixed

Qi, and can be obtained from an action where the kinetic terms for the Ai are flipped,

yielding the metric GIJ we considered in the previous section. The wormhole solution

follows from varying the action

S =
1

2κ2

∫

dDx
√

g

(

−R +
1

2
GIJ∂µφI∂

µφJ

)

(3.7)

In order to get a good semiclassical expansion, we must insert projections onto definite Q

at the wormhole ends, as above, and then on equations of motion the semiclassical action

is given by S̃, with the signs of the axion kinetic terms flipped. For transitions between

asymptotic regions at points (ϕa, Ai) and (ϕ′
a, A

′
i) in the moduli space, the wormhole

solution need only interpolate between ϕa, ϕ
′
a, with no regard for the the dependence on

Ai, A
′
i — the latter are discontinuous at the projection operators.

In order for this semiclassical approximation to be valid, the wormhole should have

large action. The wormhole carries the same charges as wrapped F- and D-string instantons,

so we need

L2/α′ ≫ 1 , L2/α′gs ≫ 1 , (3.8)

where L is the size of the T 4, assumed to be roughly isotropic. Winding F- and D-string

states couple to the axions. In the regime (3.8), these are massive compared to other scales

and can be integrated out, giving rise to small breaking of the shift symmetry on the Ai.
5

Also, in order for the supergravity description of the wormhole to hold, the throat must

be large in string units. This implies at least one of QRgs and QNSg
2
s must be large, where

QR,NS are the charges flowing through the wormhole throat.

3.2 The wormhole action

In our toy example, the action S corresponds to the axion action SA, eq. (2.2), while the

additional surface term in S̃ is equivalent, upon use of the equation of motion, to flipping

the sign of the axion action as in SF , eq. (2.1). Following the previous discussion, we use

the latter in evaluating the semiclassical action:

SF =SA +
1

2κ2

∫

dDx
√

g
∑

i

Fi(ϕ)∂µAi∂
µAi , SA =

1

2κ2

∫

dDx
√

g

(

−R+
1

2
GIJ∂φI∂φJ

)

.

(3.9)

In addition, the gravitational action requires a surface term involving the extrinsic cur-

vature of the boundary minus the extrinsic curvature of the boundary embedded in flat

spacetime [16]. However, this vanishes for euclidean wormhole solutions, because these

approach flat spacetime sufficiently rapidly at infinity [1].

5R. Myers points out that due to the complex value for the axion field in the wormhole solution, the

masses-squared of these winding states may sometimes acquire a negative real part. This should not have

any effect, since it should make sense to integrate out the winding states first and then continue to complex

Ai. One could investigate this by adding a massive winding state field to the particle model above - it

cannot have a large effect on the amplitude.

– 10 –



J
H
E
P
1
2
(
2
0
0
7
)
0
1
8

Now, very generally SA vanishes on equations of motion, since the trace of the Einstein

equation immediately implies R = 1
2GIJ∂φI∂φJ . Using our Ansatz for the metric and

scalar solution, the second term and hence the wormhole action is

2κ2

VD−1
SF (Qi) =

∫

dr aD−1
∑

i

Fi(ϕ)A′2
i =

∫

dr QiA
′
i =

∑

i

Qi∆Ai . (3.10)

Here Qi = aD−1Fi(ϕ)A′
i is the i’th conserved charge, and ∆Ai are the changes from one

end of the wormhole to the other. For the solution (2.20),

Qi = − 2

βi
e−βiϕi0/2qi ; ∆Ai = − 4

βi
eβiϕi0/2 tan qiτ∞ = − 4

βi
eβiϕi∞/2 sin qiτ∞ , (3.11)

For our D = 6 solution, each βi = 2 and the condition (2.14) becomes

1

4

4
∑

i=1

(

2

π
qiτ∞

)2

=
5

8
. (3.12)

The parameter qiτ∞ must be less than π/2 for all i in order to have a nonsingular solu-

tion; this allows some region of parameter space, corresponding to different ratios the four

charges.

Ref. [1] also considers a topological term γ in the action, proporional to the Euler

number of the wormhole. This is the analog of the string coupling constant in the world-

sheet expansion. For Calabi-Yau compactification such a term would descend from a ten-

dimensional Euler number term [1], which conceivably could be present with an arbitrary

coefficient. However, our compactification has a toroidal factor, so the ten-dimensional

Euler number is zero. A four-dimensional Euler number term might also be produced by

string and quantum corrections, but we are assuming that the wormhole throat is large so

that such higher derivative corrections are small.

For comparison, let us note that for supersymmetric instantons the geodesic is null [17,

11], so that dAi = ±(2/βi)d(eβiϕi/2). Thus, ∆Ai = ±(2/βi)∆(eβiϕi/2), where we are now

referring to the change between the asymptotic region and the instanton center. In fact,

eβiϕi/2 vanishes at the core, so we can write for a supersymmetric instanton

2κ2S(Q)

ΩD−1
=

∑

i

∣

∣

∣

∣

2Qi

βi

∣

∣

∣

∣

eβiϕi∞/2 . (3.13)

Since | sin qiτ∞| is less than one, the wormhole action (3.10), (3.11) is strictly less than that

of a collection of supersymmetric instantons of the same total charge in the place of the

two ends of the throat. This is a curious result: for a particle state it would correspond

to violation of the BPS bound, but for an instanton there appears to be no sharp conflict

with supersymmetry.

There has been an interesting related observation in ref. [18], that the wormhole would

map to an impossible gauge theory configuration, in which (F − F̃ )2 would have to be

negative. That is, the BPS-violating bulk instanton maps to a BPS-violating boundary

instanton, and there the action has positivity properties that forbid this.
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4. Discussion

Now let us formulate a sharp paradox. The basic idea is that the ends of a wormhole can

be arbitrarily separated in time, so that amplitudes will not satisfy cluster decomposition,

whereas the dual gauge theory has local time evolution and so will satisfy cluster decompo-

sition. Ref. [7] gave similar arguments to the effect that AdS/CFT duality is inconsistent

with α parameters.

The CFT dual to IIB string theory on AdS3 ×S3 ×T 4 is given by the infrared limit of

the D = 2, N = 4, supersymmetric gauge theory with gauge group SU(Q1)× SU(Q5) [19].

If one avoids special points on the moduli space of the T 4 [20], the scalar potential for the

gauge theory on a circle increases in all directions, so the spectrum should be discrete.

The size of the T 4 is of order (Q1/Q5)
1/4 in string units, so we need Q1 ≫ Q5, Q5g

2
s

in order that the conditions (3.8) for the semiclassical expansion be valid. The radii of the

AdS3 × S3 are of order (gsQ5)
1/2 in string units, so we need gsQ5 ≫ 1 in order that these

radii be large compared to the string scale. If these conditions are satisfied then we can

arrange the wormhole charges so that the throat is large compared to the string scale and

small compared to the AdS radius. We can take Q1 and Q5 to be large but finite, and

this is a superrenormalizable theory, so there should be no subtlety in regarding this as an

ordinary quantum mechanical system.

For nonsingular wormholes the fields fall off as 1/r4 in flat spacetime (like the Coulomb

Green’s function). At longer distance this will go over to the Coulomb Green’s function

for AdS3 × S3,

G(τ, θ) =
1

4(cosh τ − cos θ)2
, (4.1)

where τ and θ are the distance along AdS3 and S3 respectively. This is normalizable at

infinity, so these wormholes, if present, would represent effects described by the original

CFT rather than a perturbation of the CFT [21, 22].6 The wormhole ends interact through

their long-range fields. The wormhole solution is thus not exact — its action depends on

the separation of the wormhole ends. However, this effect falls off exponentially (4.1). In

the usual spirit of dilute gas instanton sums, there is not at an exact saddle point of the

action but rather a nearly flat plateau parameterized by the positions of the ends.

To make the cluster decomposition argument, consider the gauge theory on a very long

periodic Euclidean time T , with one set of operators O1 near τ = 0 and another set O2

near τ = T/2. Assuming that the vacuum is unique, we have in the gauge theory that

〈O1O2〉 = 〈0|O1|0〉〈0|O2|0〉 + O(e−ET/2) (4.2)

where E is the gap to the first excited state. Possibly in some cases the ground state has

a finite degeneracy leading to a finite sum of such terms, but no more than this because of

our remarks about the scalar potential. On the other hand, if the bulk physics is described

6Depending on which U -dual form of the wormhole solution we use, there may be Chern-Simons couplings

of the axions. These give rise to AdS masses, and so the Green’s function falls off faster.
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by α-parameters as in eq. (1.2), we would have the expression

〈O1O2〉 =

∫

dα e−
1

2
αI(C−1)IJ αJ 〈0|O1|0〉α〈0|O2|0〉α + O(e−EαT/2) , (4.3)

where the subscript α indicates that quantities are to be calculated using the α-shifted

action. This is not equivalent to a product (4.2) or a sum of products.7

Thus it appears that quantum gravity as constructed via AdS/CFT duality does not

include Euclidean wormholes, or if it does then they do not have the expected effect. It

has been suggested to us by several people that one might get a different gravity, with

wormholes, by modifying the CFT. For example, introducing nonlocal bilinear interac-

tions (1.1) directly into to CFT would destroy cluster decomposition. However, this does

not seem plausible to us. Modifications of the CFT correspond to perturbations of the

boundary conditions, not the bulk dynamics. An experimentalist in the bulk should be

able to distiguish a local modification of the dynamics from effects propagating inward

from the boundary (for example, by doing measurements within a Faraday cage).

The wormhole solutions we have found pose a sharp paradox with AdS/CFT and the

apparent uniqueness of quantum gravity in maximally supersymmetric backgrounds. One

might have hoped that string theory would have avoided such paradoxes by not producing

effective field theories allowing wormhole solutions, but that does not appear to be the case.

Instead, these saddle points of the euclidean path integral apparently do not contribute

to the partition function despite no obvious IR pathologies (beyond the usual ones of

euclidean gravity). Of course, there is no reason to expect every saddle point of an integral

to contribute — this is already the case even for ordinary integral,s (such as the Airy

integral), but one is left to wonder what are the rules that determine saddles contribute

and which don’t. What is pathological about the wormhole solutions?

Perhaps there is simply a rule excising topologically non-trivial configuations like worm-

holes from the approximate sum over geometries. Or it may be that the fact that the action

lies below the BPS action is a clue that these solutions are in a region of field space that

is not reached by a proper contour rotation. The observation of ref. [18], discussed at the

end of the previous section, is a further argument in this direction.

Another interesting observation is that the wormhole solution traverses a large dis-

tance in moduli space, in Planck units. In analagous situations in Minkowski space, it is

difficult to set up backgrounds which span super-Planckian ranges in moduli space without

generating horizons to shield them. Some have taken such arguments to imply that there

is no sense in which we can talk about distant vacua in moduli space as really part of the

same theory, though there have been no convincing arguments on this issue either way.

Our wormhole solutions provide a setting where a similar question can be asked. Worm-

holes exist in the long-distance theory only when super-Planckian distances are traversed

in moduli space. There are no horizons these excursions can hide behind in euclidean

space, and the naive interpretation of wormholes makes connecting distant parts of moduli

7There is a large amount of supersymmetry in the bulk, and because this is a gauge symmetry it must

be respected by the effective operators induced by the wormhole. These will therefore start at some high

dimension, but this does not affect the problem of principle with cluster decomposition.
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space in the same theory compulsory. It is therefore interesting that the apparently correct

interpretation — that wormholes don’t contribute after all — also censors this connection.

Finally, it may be that wormholes do contribute to the path integral but that the

interpretation in terms of fluctuating couplings is not correct. That is, there may be some

question in quantum gravity for which these saddles contribute. See for example ref. [23]

for an alternate interpretation.
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